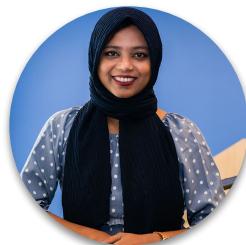


A Meta-Summary of Challenges in Building Products with ML Components

Collecting Experiences from 4758+ Practitioners



Nadia Nahar*

Haoran Zhang

Grace Lewis

Shurui Zhou

Christian Kästner

2nd International Conference on AI Engineering – Software
Engineering for AI (CAIN 2023)

Machine Learning in Software Products

Data Science Process is Model Centric

face_detection.ipynb

File Edit View Insert Runtime Tools Help Cannot save changes

+ Code + Text Copy to Drive

```
[6] print("[INFO] loading model...")
prototxt = 'deploy.prototxt'
model = 'res10_300x300_ssd_iter_140000.caffemodel'
net = cv2.dnn.readNetFromCaffe(prototxt, model)

[INFO] loading model...

Use the dnn.blobFromImage function to construct an input blob by resizing t

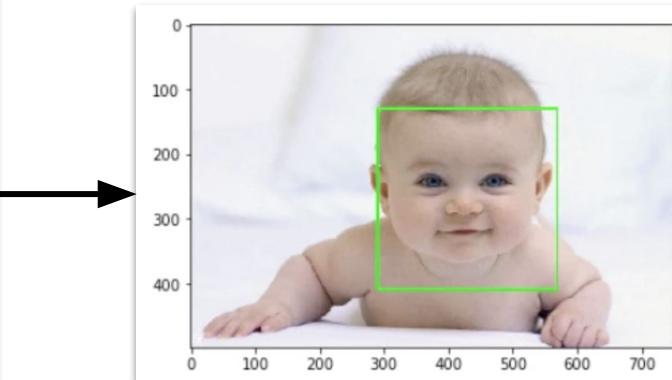
[7] # resize it to have a maximum width of 400 pixels
image = imutils.resize(image, width=400)
blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)),

Pass the blob through the neural network and obtain the detections and prec

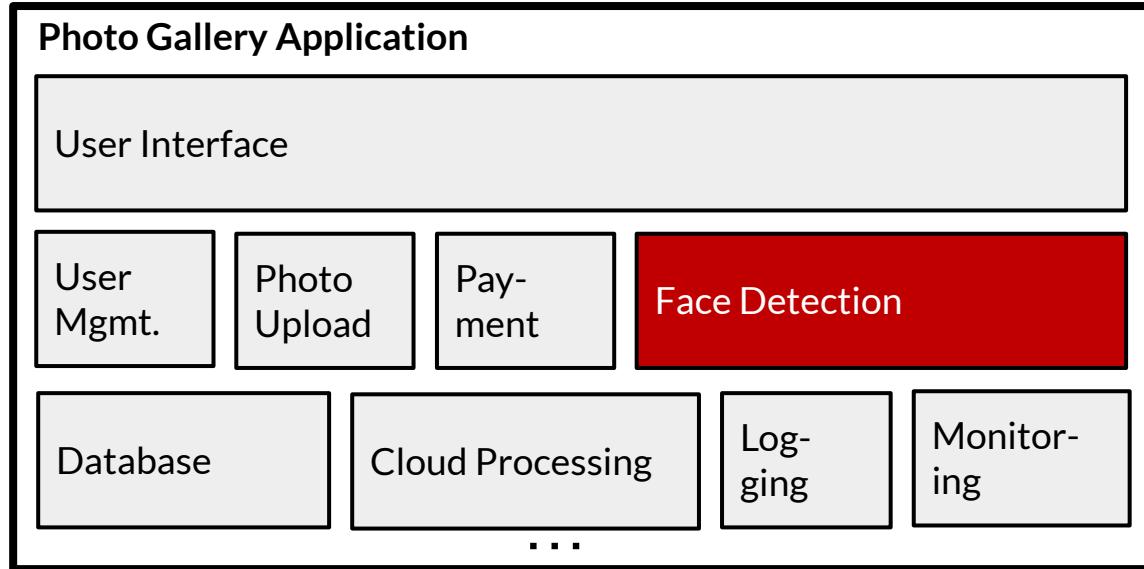
[8] print("[INFO] computing object detections...")
net.setInput(blob)
detections = net.forward()

[INFO] computing object detections...

Loop over the detections and draw boxes around the detected faces
```



Model as a Component



Google Photos

11:59 ↗

Google Photos

Search your photos

People & pets

Nadia Nahar Asif Imtiaz Fahmida Suchi Samia

Places

Pittsburgh Your map Pittsburgh Seattle

Documents

Sign Screenshots Posters

Things

Photos Search Sharing Library

12:00 ↗

Nadia Nahar (Me) 9,235 photos

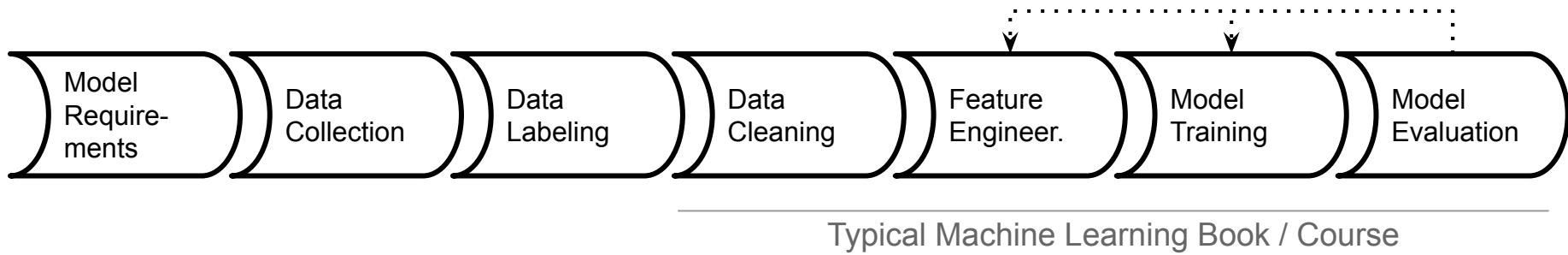
Share as album Order book

Yesterday

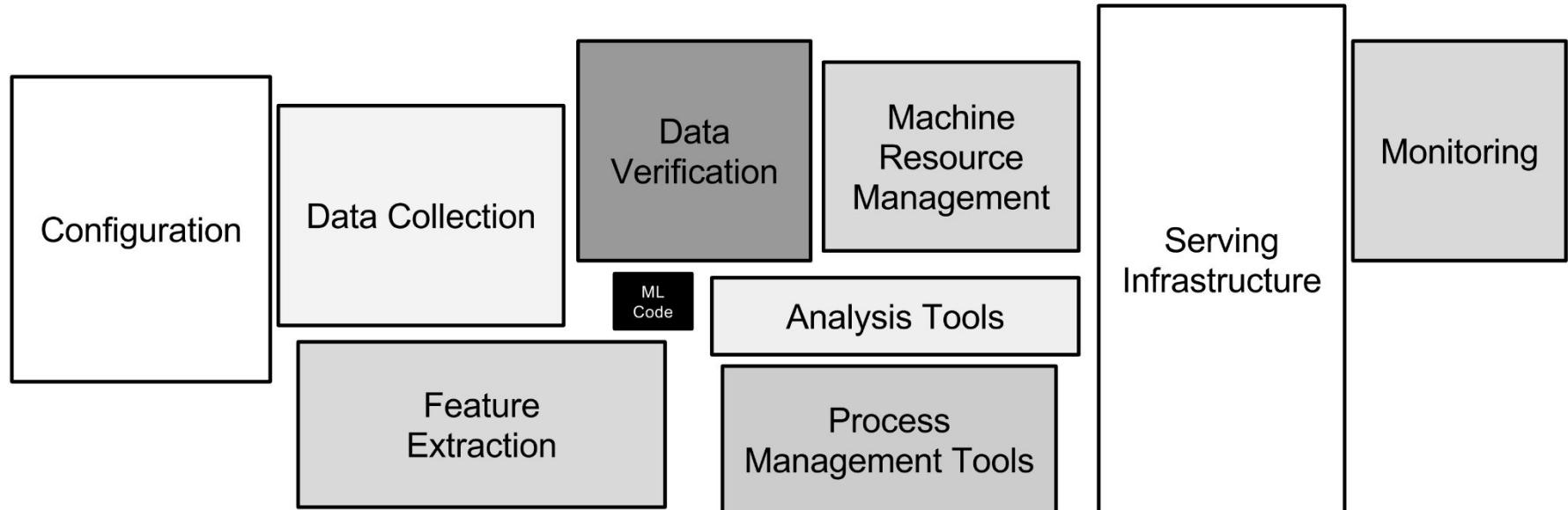
Same or different person? Improve these results

From Model to Product

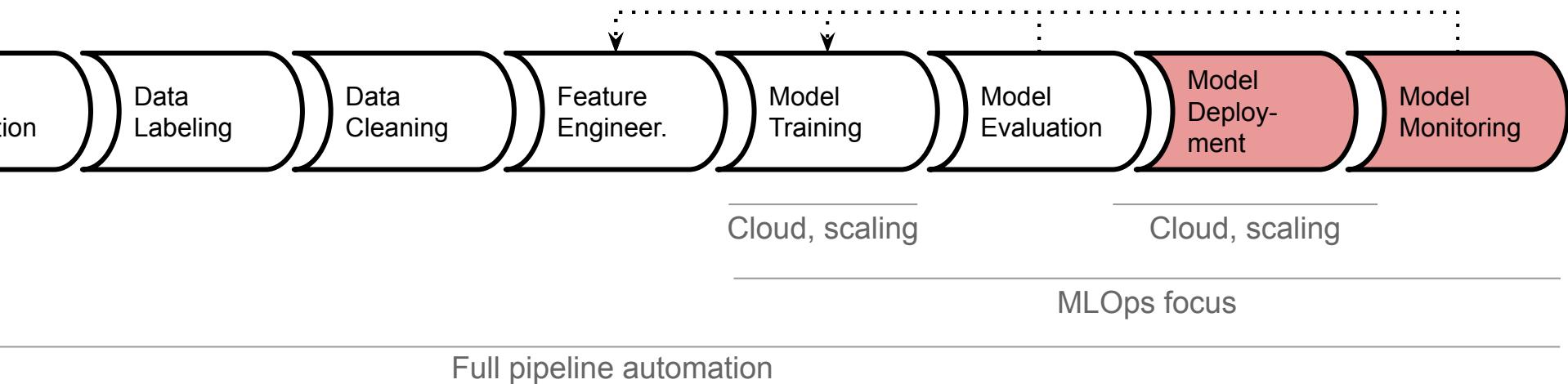
Data Science Pipeline



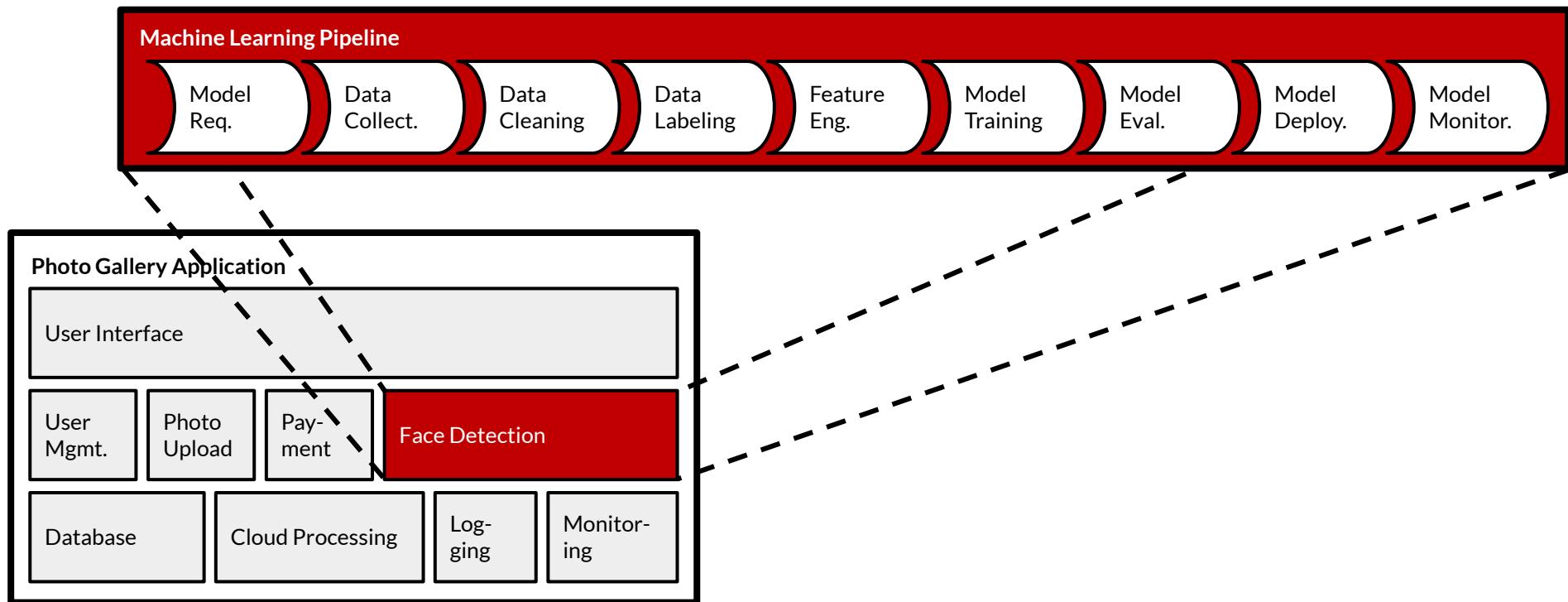
Model Deployment is Complex



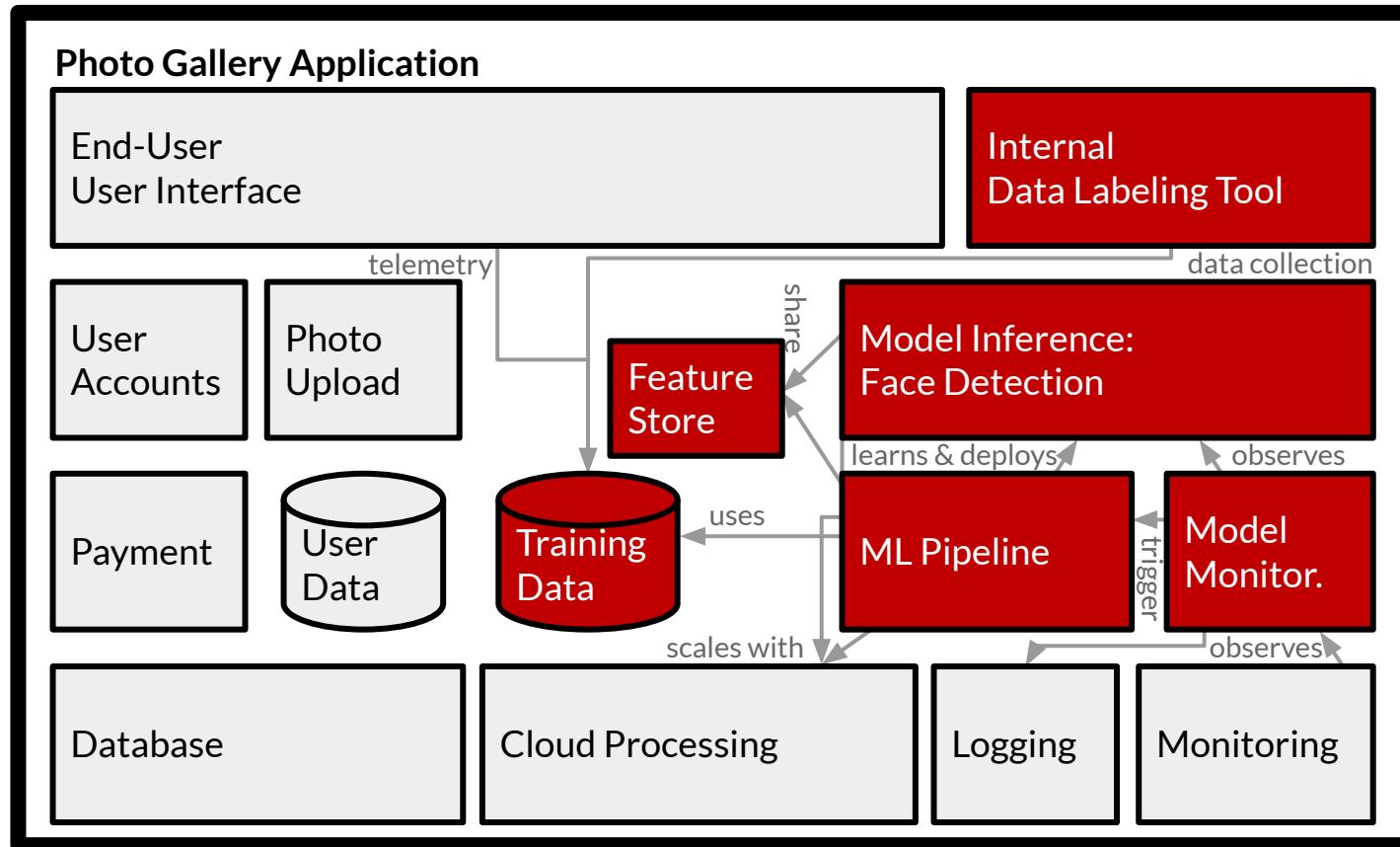
Pipeline Automation and MLOps



ML is a Component of a Product



...Or Many Components



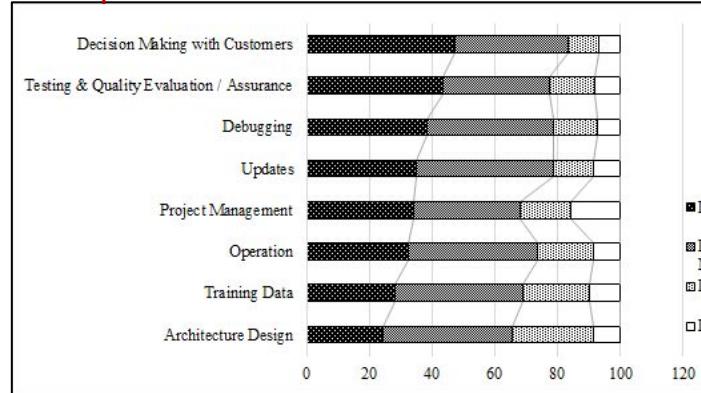
How Does Introduction of ML Impact Software Engineering?

What are the Struggles of Practitioners?

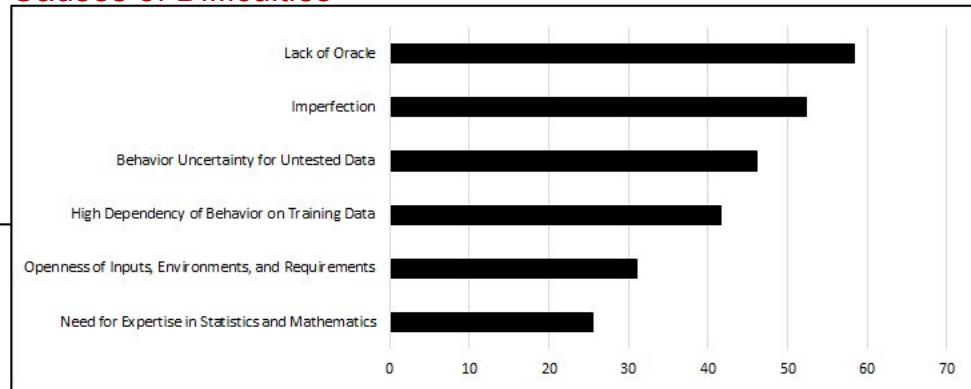
Researchers have attempted to understand the challenges of industry practitioners through **interviews, surveys, case studies, ethnographic studies**, and so on.

Study on Engineering of ML Systems

Perception of Difficulties



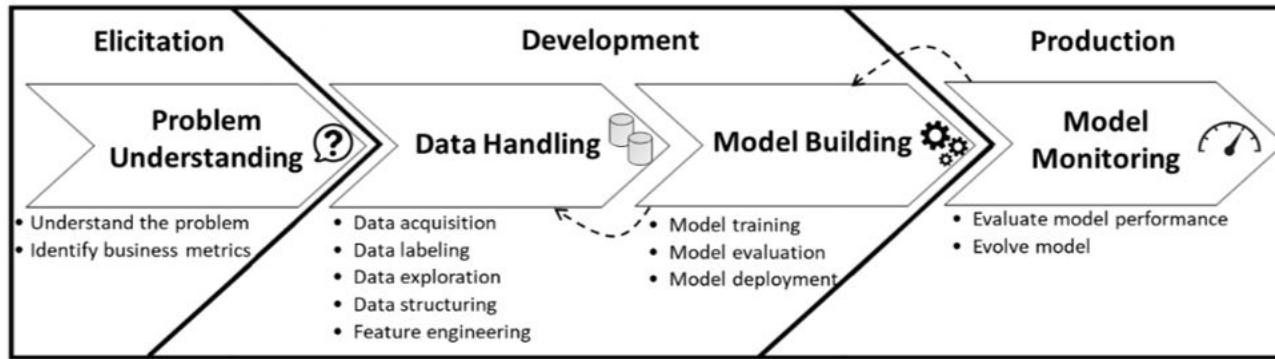
Causes of Difficulties



- L4: Existing Approaches Not Applicable Anymore
- L3: Same Approaches Applicable but Methods/Tools Immature
- L2: Dedicated Methods/Tools Available
- L1: Existing Methods/Tools Applicable

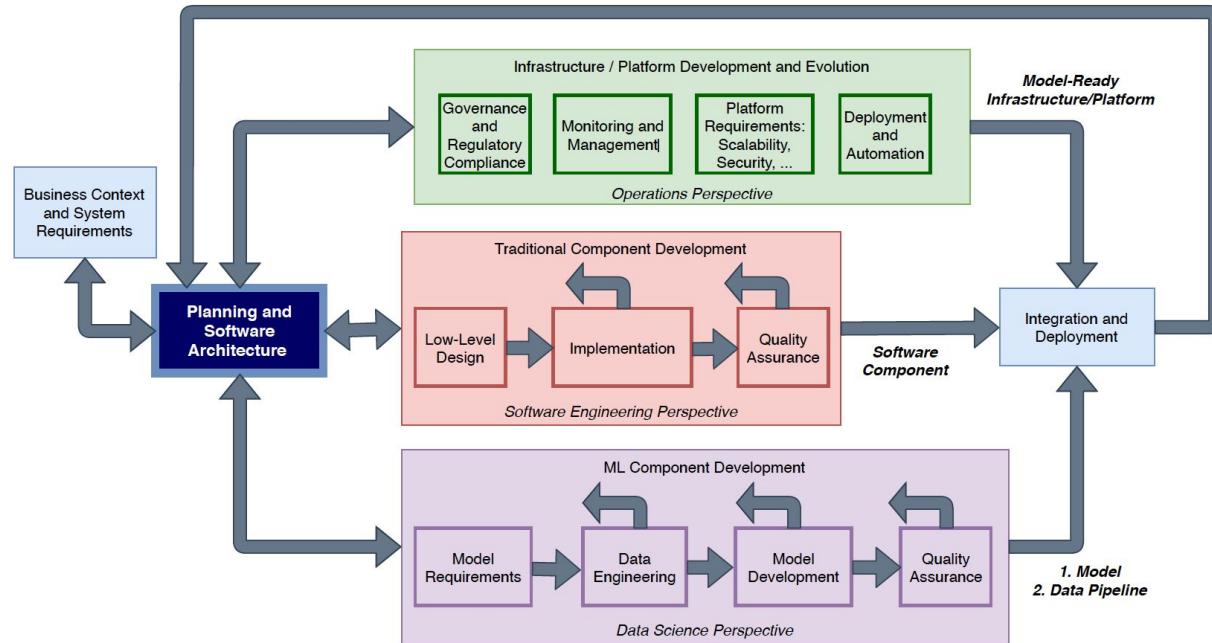
Ishikawa, Fuyuki, and Nobukazu Yoshioka. "How Do Engineers Perceive Difficulties in Engineering of Machine-Learning Systems? -Questionnaire Survey." In 2019 IEEE/ACM Joint 7th International Workshop on Conducting Empirical Studies in Industry (CESI) and 6th International Workshop on Software Engineering Research and Industrial Practice (SER&IP), pp. 2-9. IEEE, 2019.

Study on Development Processes



de Souza Nascimento, Elizamary, Iftekhar Ahmed, Edson Oliveira, Márcio Piedade Palheta, Igor Steinmacher, and Tayana Conte. "[Understanding Development Process of Machine Learning Systems: Challenges and Solutions.](#)" In *Proceedings of International Symposium on Empirical Software Engineering and Measurement (ESEM)*, pp. 1-6, 2019.

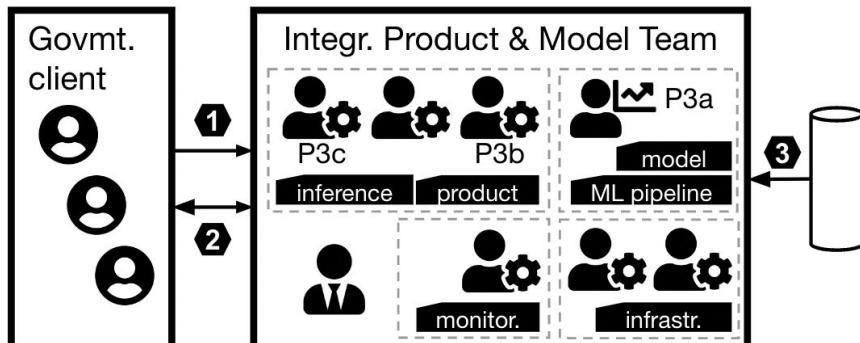
Study on Software Architecture



Lewis, Grace A., Ipek Ozkaya, and Xiwei Xu. **"Software Architecture Challenges for ML Systems."** In *Proceedings of International Conference on Software Maintenance and Evolution (ICSME)*, pp. 634-638, 2021.

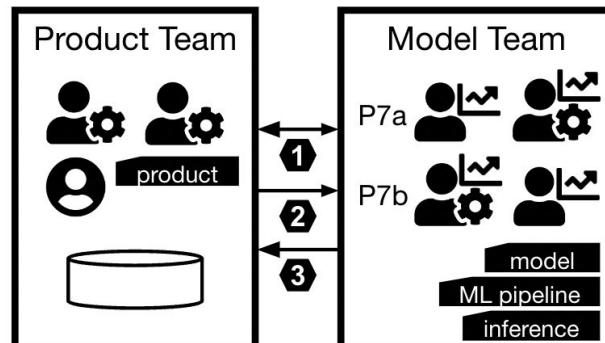
Study on Collaboration and Teams

Organization 3



① Prod. requirements ② API, implicit feedback ③ Online data

Organization 7



① Model req. ② Training data ③ Model API

Nahar, Nadia, Shurui Zhou, Grace Lewis, and Christian Kästner. ["Collaboration Challenges in Building ML-enabled Systems: Communication, Documentation, Engineering, and Process."](#) In Proceedings of the 44th International Conference on Software Engineering, pp. 413-425. 2022.

Lots of Pain-point Papers

Researchers study different challenges in building ML Products

There are lots of studies with industry practitioners

Lots of Pain-point Papers

Data Scientists in Software Teams: State of the Art and Challenges

How do Engineers Perceive Difficulties in
Engineering of Machine-Learning Systems?
- Questionnaire Survey

Fuyuki Ishikawa
National Institute of Informatics
Tokyo, Japan
f-ishikawa@nii.ac.jp

Adapting Software Architectures to
Machine Learning Challenges

Joost Visser
LIACS, Leiden University
The Netherlands
j.m.w.visser@liacs.leidenuniv.nl

Characterizing and Detecting Mismatch in
Machine-Learning-Enabled Systems

How does Machine Learning Change
Software Development Practices?

Zhiyua

Requirements Engineering for Machine Learning:
Perspectives from Data Scientists

Andreas Vangelana

Markus Borg
ISE Research Institutes of Sweden AB
Lund, Sweden
markus.borg@ri.se

Machine Learning Practices Outside Big Tech:
How Resource Constraints Challenge Responsible Development

ASPEN HOPKINS*, Massachusetts Institute of Technology, USA

SERENA BOOTH*, Massachusetts Institute of Technology, USA

Lots of Pain-point Papers

Researchers study different challenges in building ML Products

There are lots of studies with industry practitioners

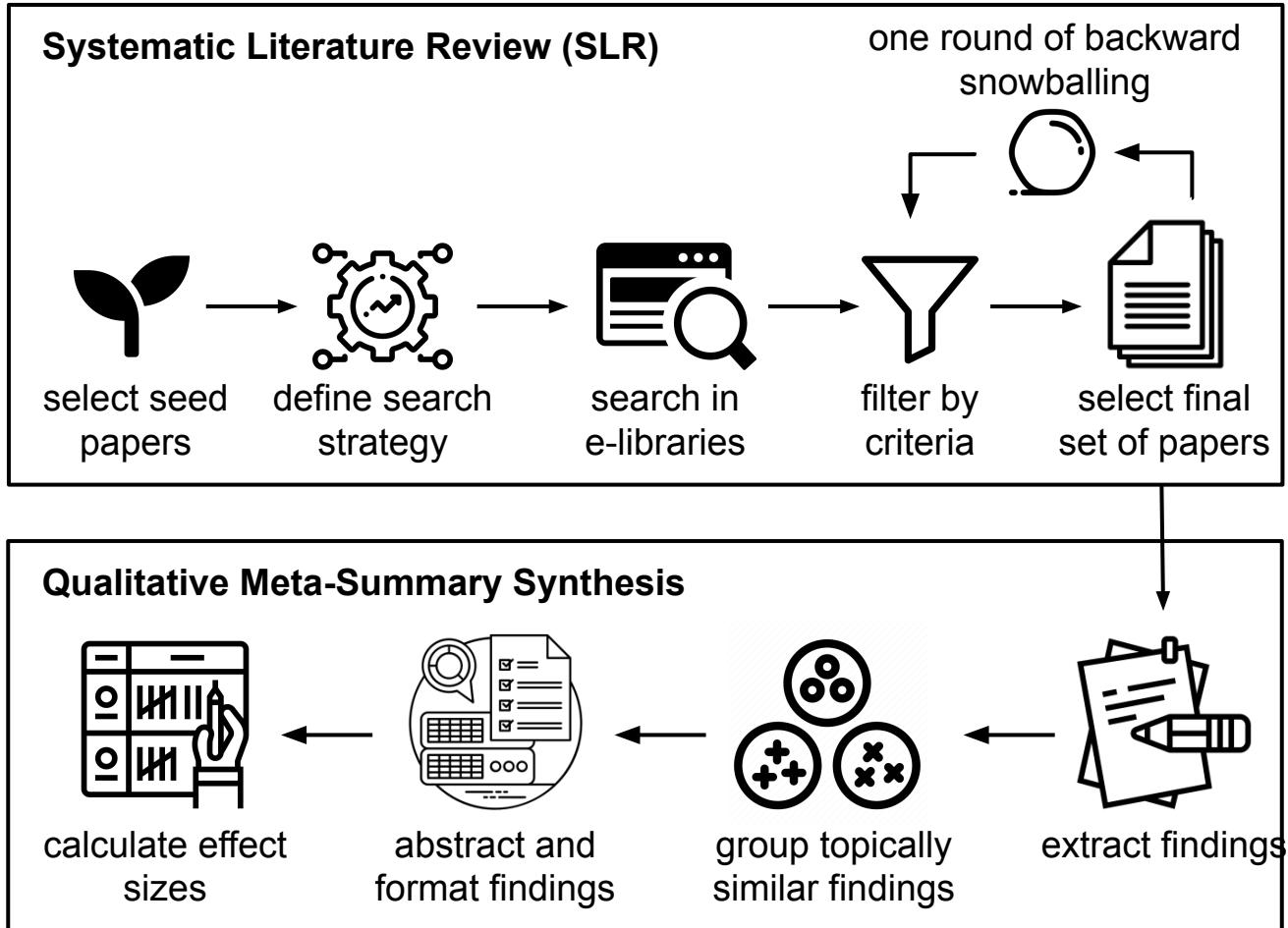
Time to explore what we know collectively...

Research Question

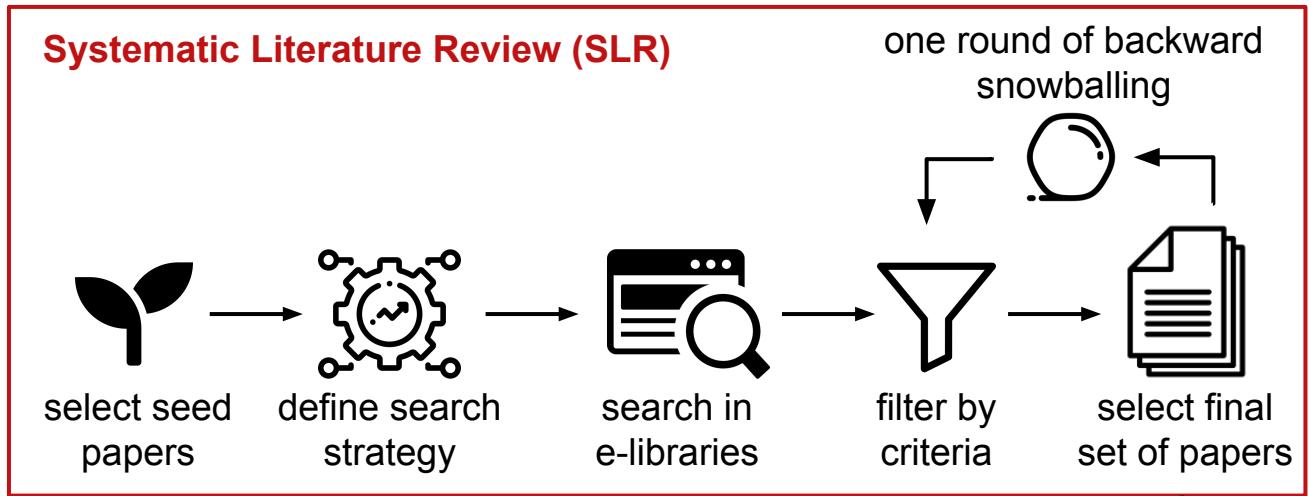
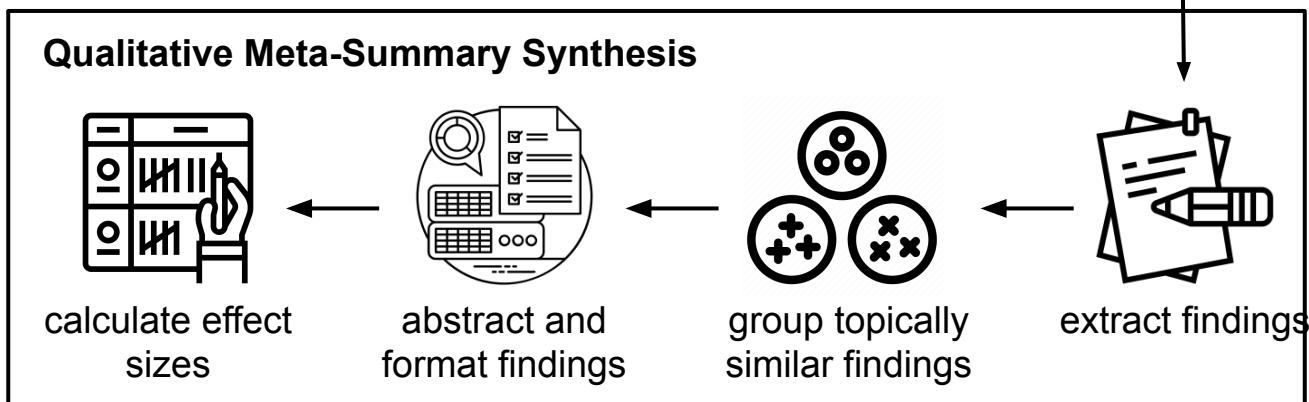
“What are the challenges experienced by industry practitioners in building software products with ML components?”

Our Contribution

Overview



Overview



Paper Selection Criteria

Paper includes software engineering challenges for ML systems.

Paper uses interview or survey with industry practitioners (software engineers, data scientists, etc.) to identify the challenges.

Excluded model centric papers.

Excluded single case study papers.

Excluded interviews with non-technical people only.

Start with Seed Papers

	A	B	C	D	E
1	Papers	Abstracts			Where
2	1 Software engineering for machine learning: A case study	Recent advances in machine learning have stimulated widespread interest within the			IEEE
3	2 Requirements Engineering for Machine Learning: Perspectives from Data Scientists	Machine learning (ML) is used increasingly in real-world applications. In this paper, we			IEEE
4	3 Improving fairness in machine learning systems: What do industry practitioners need?	The potential for machine learning (ML) systems to amplify social inequities and unfai			ACM
5	4 Where Responsible AI meets Reality: Practitioner Perspectives on Enablers for shifting Organizational Practices	Large and ever-evolving technology companies continue to invest more time and reso			ACM
6	5 Adapting Software Architectures to Machine Learning Challenges	Unique developmental and operational characteristics of ML components as well as t			IEEE
7	6 Data Scientists in Software Teams: State of the Art and				

Seed Paper Analysis for Defining Query

	A	B	C	D	E	F	G	H	I
1		Papers	Why missed initially?	Abstracts	Where	SE search keyword	ML search keyword	Method search keyword	Other
2	1	Software engineering for machine learning: A case study	no mention of interview in abstract	Recent advances in machine learning IEEE		software engineering	machine learning, data science		challenge
3	2	Requirements Engineering for Machine Learning: Perspectives from Data Scientists	no mention of "Software Engineering" in abstract, but have engineering	Machine learning (ML) is used IEEE		ML systems	machine learning	interview	challenge
4	3	Improving fairness in machine learning systems: What do industry practitioners need?	no mention of "Software Engineering" or engineering in abstract	The potential for machine learning ACM		ML systems	machine learning	interview, survey	challenge
5	4	Where Responsible AI meets Reality: Practitioner Perspectives on Enablers for shifting Organizational Practices	no mention of "Software Engineering" or engineering in abstract	Large and ever-evolving technology ACM		production-ready systems	artificial intelligence	interview	challenge

Search Query

A: need an **ML-related keyword**

- “machine learning” OR “artificial intelligence” OR “deep learning” OR “ML component” OR “data science”

B: need a **software engineering or ML deployment-related keyword**

- “software engineering” OR “software systems” OR “production-ready systems” OR “ML systems” OR “deploying ML” OR “ML deployment”

C: need to mention **surveys or interviews**

- “interview” OR “survey” OR “questionnaire”

“A AND B AND C”

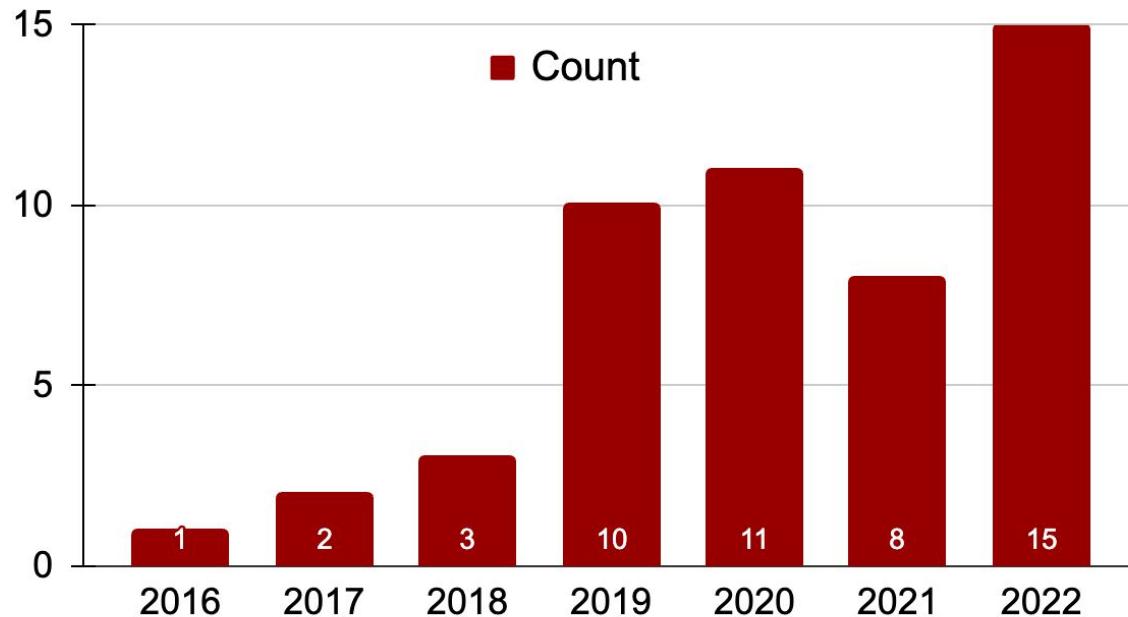
50 Papers Qualified

Data Source	Initial Search Result	After Filtering by Title/Abstract	Final Selection
IEEE	69	30	19
ACM	48	11	10
Willey	6	0	0
ScienceDirect	32	5	3
Engineer Village	101	3	0
Springer	6*	3	2
arXiv	79	8	5
Snowballing	-	26	11
Total	341	86	50

*abstract filtering from 5612 papers retrieved with full text search

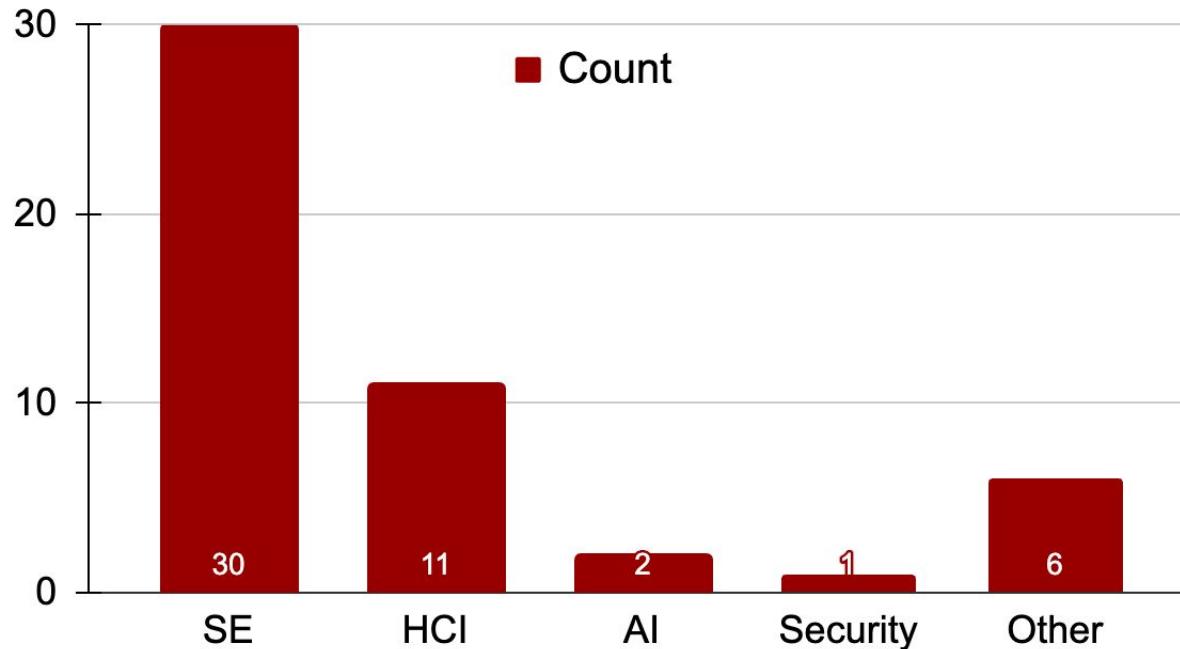
Final Set – 50 Papers

Year Distribution of Selected Papers



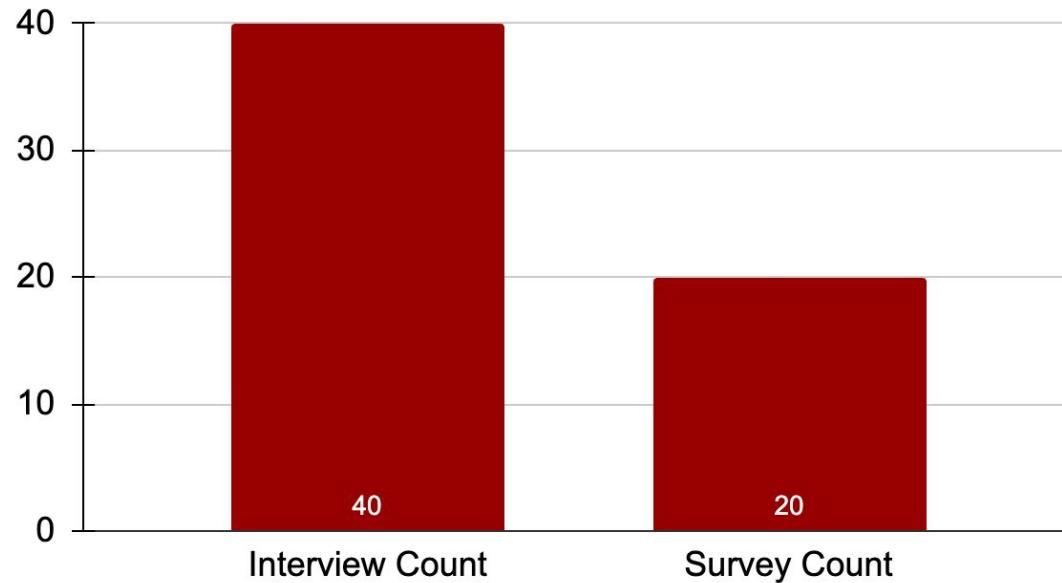
Final Set – 50 Papers

Publication Venue Category

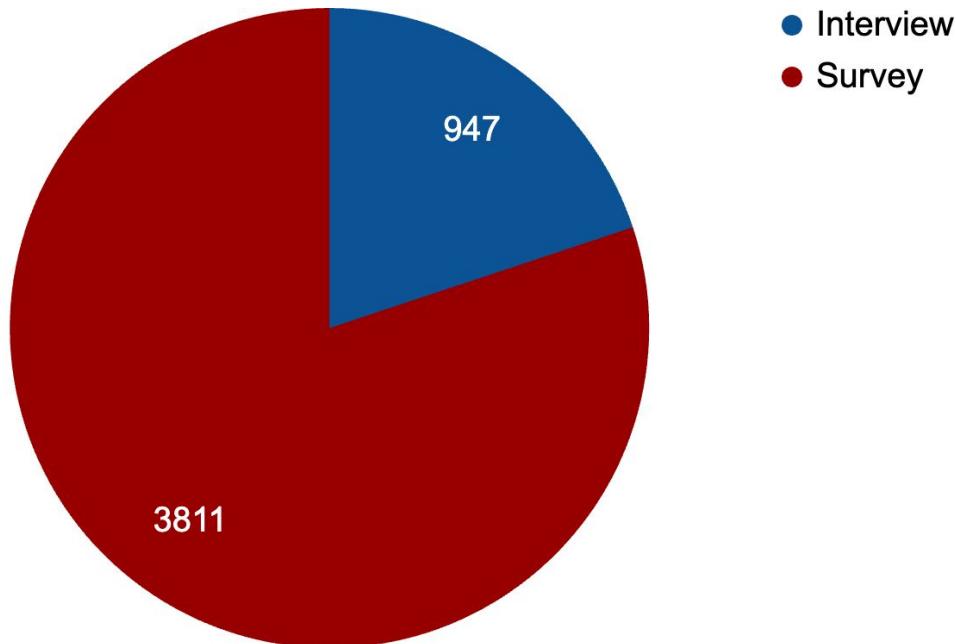


Final Set – 50 Papers

Study Type

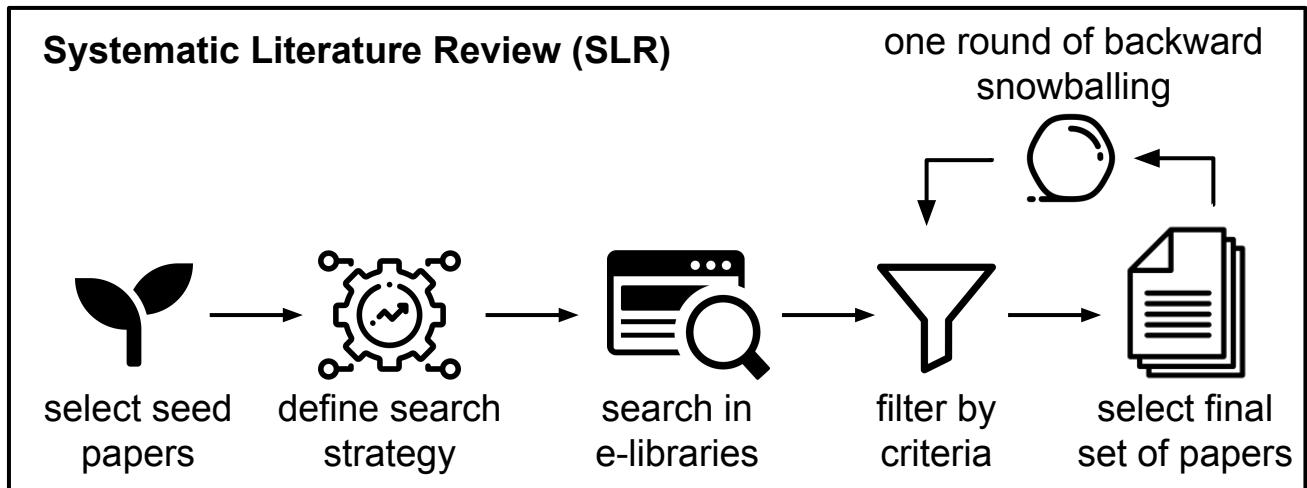
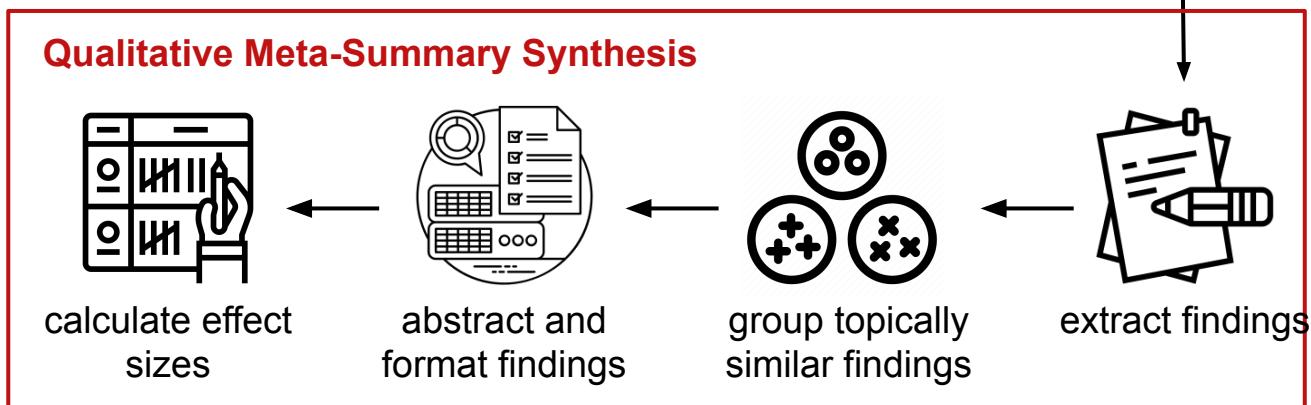


Practitioner Count – 4758+*



*count unspecified in seven papers

Overview



Qualitative Synthesis Methods

Table 1: Overview of qualitative synthesis methods applied in software engineering

Synthesis method	Features	Attributes	Aim
Narrative synthesis	Narrative description and ordering of primary evidence with commentary	<ul style="list-style-type: none"> •Interpretive •Epistemology of idealism 	An overview of the findings of primary studies is presented, summarizes the main themes, findings and related issues.
Thematic synthesis	Identifying major or recurring themes in literature and summaries of results of primary studies under the headings of these themes	<ul style="list-style-type: none"> •Aggregative •Epistemology of realism •Highly structured in data organizing •Outcome utilitarian 	Identify, analyze, and report themes or patterns within data
Meta-ethnography	<i>"Interpretations and explanations in the primary studies are treated as data, and are translated across several studies to produce a synthesis"</i>	<ul style="list-style-type: none"> •Interpretive •Epistemology of realism 	The integration of data from the primary study by means of induction, interpretation, translation, helps to understand and transfer ideas and concepts
Meta-summary	Quantitative oriented aggregation of qualitative findings. Identify the frequency of each discovery, as well as the discovery of high frequency findings	<ul style="list-style-type: none"> •Aggregative •Epistemology of realism •Outcome theoretical 	Discover a pattern or theme in qualitative research based on the higher frequency of findings
Content analysis	The evidence for each of the primary study is used under a wide range of thematic headings, designed to help with repetitive extraction tools	<ul style="list-style-type: none"> •Aggregative •Epistemology of realism 	Count and tabulate on each occurrence of the theme
Grounded theory	Identifying patterns and relationships in primary data, sampling for analysis, exploring commonalities, and generating theories or models	<ul style="list-style-type: none"> •Interpretive •Epistemology of realism •Iterative and circular in processes •Outcome theoretical 	Generates higher-order themes and interpretations
Comparative analysis	Using Boolean logic (based on specific results of truth tables) to analyze complex causal relationships	<ul style="list-style-type: none"> •Aggregative •Epistemology of realism 	Analyzes complex causal connections
Case survey	Making closed questions to extract data and each primary study can be seen as a specific case	<ul style="list-style-type: none"> •Aggregative •Epistemology of realism 	Extracted data can be used for further (statistical) analysis

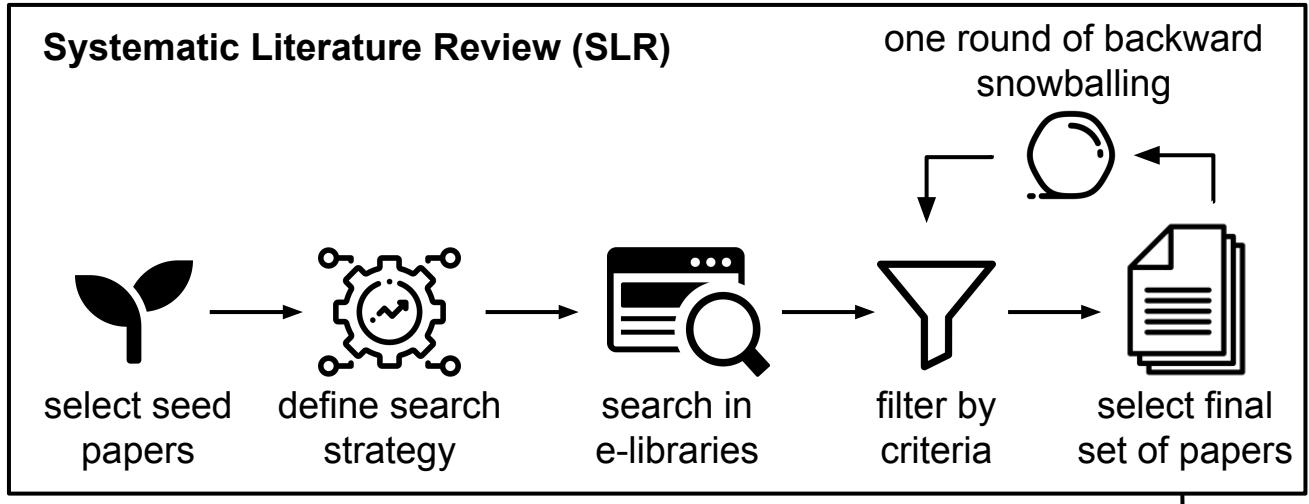
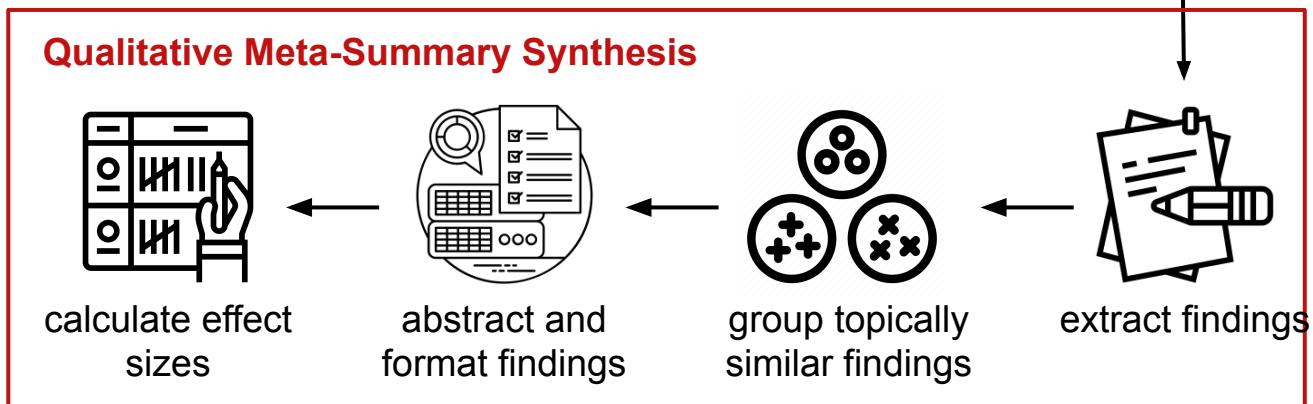
Meta-Summary Method

Well-balanced, falls between high-level analysis such as mapping studies and deeper interpretative syntheses such as meta-ethnography*

Aggregate and present frequencies of findings

*Ribeiro, Danilo Monteiro, Marcos Cardoso, Fabio QB da Silva, and César França. "Using Qualitative Metasummary to Synthesize Empirical Findings in Literature Reviews." In Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, pp. 1-4. 2014.

Overview



Extract Challenges

mentioned by developers during our interviews.

a) *Identifying business metrics is not trivial* - in the initial stage of “Problem Understanding,” developers need to identify what the customers’ business metrics are. However, performing this task is challenging, as stated by P5, when we asked “*how do you identify customer’s business metrics? That’s a challenge.*” Still, the *customer wants to have policies to improve their business, metrics and data are required* participants P4 and P6.

“The customer wants to have a do it, what kind of data he should even understand the data he needs

“When the customer does not have this is a problem that we still have academic metrics that are already

to show this to the customer is difficult, because he often does not understand it.” (P4)

b) *Undefined process* – during the “Data Handling” stage, the developer performs various tasks including data processing, which entails checking missing data, verifying inconsistencies, performing feature engineering. As stated by : “*At Feature engineering stage, it is important to have insights. cause we know that if we do not do anything in some attributes, model should discard these attributes in the next stage.*”

As stated by P5, failure to perform these tasks can result in *or model and performance. Since all companies do not have defined development process for ML systems each*

	A	B	C	D	
	#	Title	Listed RQs	Study Method	Challenges
1	1	Understanding Development Process of Machine Learning Systems: Challenges and Solutions	RQ1: How software developers build ML systems in small companies? RQ2: What challenges are perceived by developers during the development of ML systems in small companies? RQ3: Is it possible to help the developers overcome these challenges?	Interviews with 7 devs from 3 small companies	Identifying business metrics is not trivial - the customer wants to have policies to improve their business, metrics and data are required to do so Undefined process - do not have a defined development process for ML systems Difficulty to design the database structure - Developers have repository technical knowledge, and it is initially a manual process.
2	6	Characterizing and Detecting Mismatch in Machine-Learning-Enabled Systems	RQ1: What are common types of mismatch that occur in the end-to-end development of ML-enabled systems? RQ2: What are best practices for documenting data, models, and other system elements that will enable detection of ML mismatch? RQ3: What are examples of ML mismatch that could be detected in an automated way, based on the codification of best practices in machine-readable descriptors for ML system elements?	Interview with 20 practitioners, and a validation survey with 31 responses	incorrect assumptions about the Trained Model (36%), which engineers for integration into a larger system - Most mismatches were related to lack of test cases and data that specifications and APIs (17%) - unawareness of decisions, assumptions, limitations, and constraints Operational Environment, which refers to the computing environment associated with lack of runtime metrics, logs, user feedback, and error troubleshooting, debugging, or retraining (54%), etc etc etc Task and Purpose, which are the expectations and constraints business goals or objectives that the model was meant to satisfy (30%)

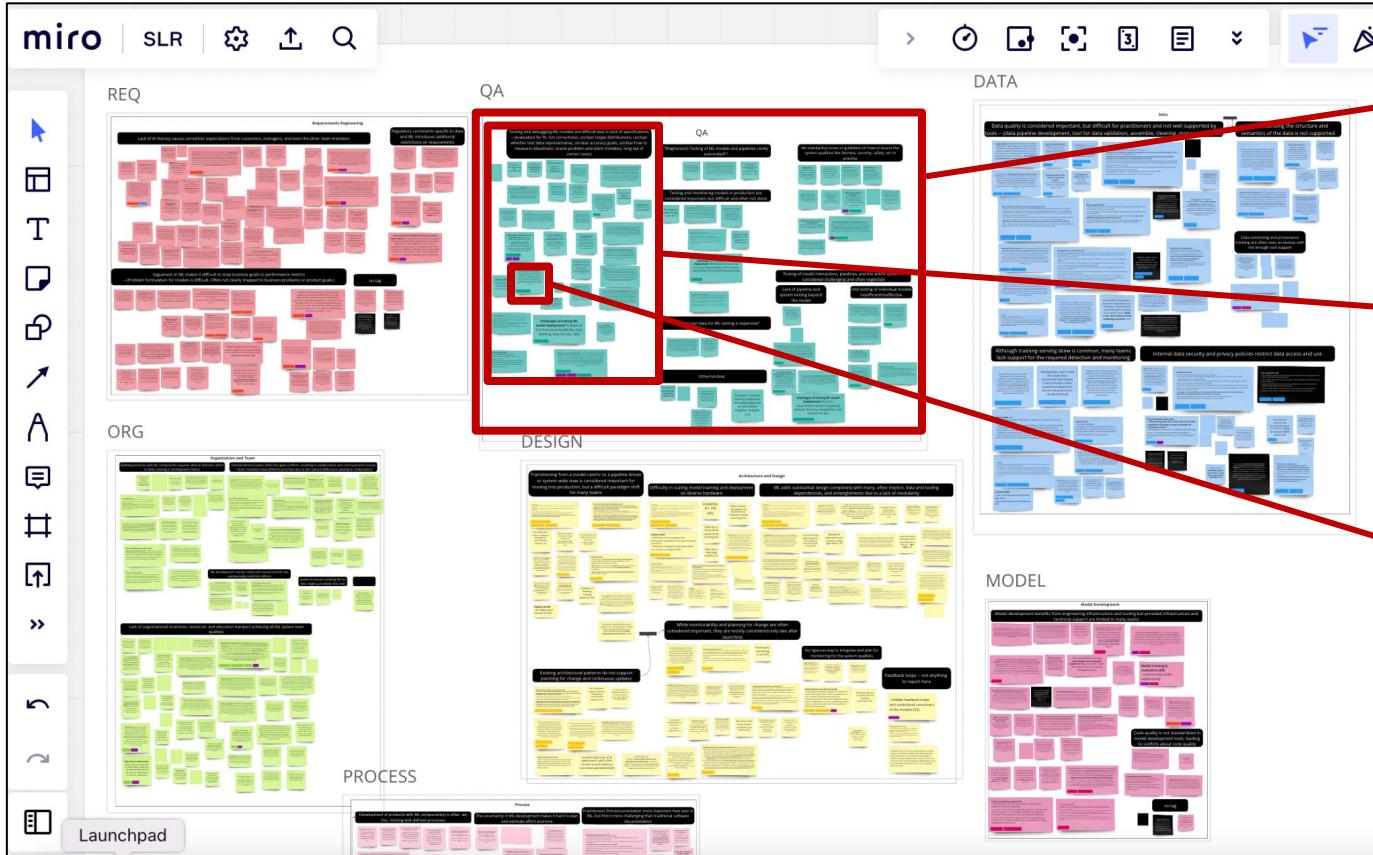
Card Sorting in Miro Board*

The Miro board displays six card sorting results, each representing a different category:

- REQ (Requirements Engineering):** Focuses on requirements management, including stakeholder analysis, prioritization, and tracking.
- QA (Quality Assurance):** Focuses on QA processes, including testing, defect tracking, and quality metrics.
- DATA (Data Quality):** Focuses on data quality issues, including data integrity, consistency, and reliability.
- ORG (Organization and Team):** Focuses on organizational structure, team management, and communication.
- DESIGN (Architecture and Design):** Focuses on design principles, architecture, and engineering practices.
- MODEL (Modeling and Analysis):** Focuses on modeling, analysis, and data modeling.

The board also includes a sidebar with various icons for selection, search, and navigation, and a footer with a "Launchpad" button.

Three Layers of Clusters



top layer – development stages

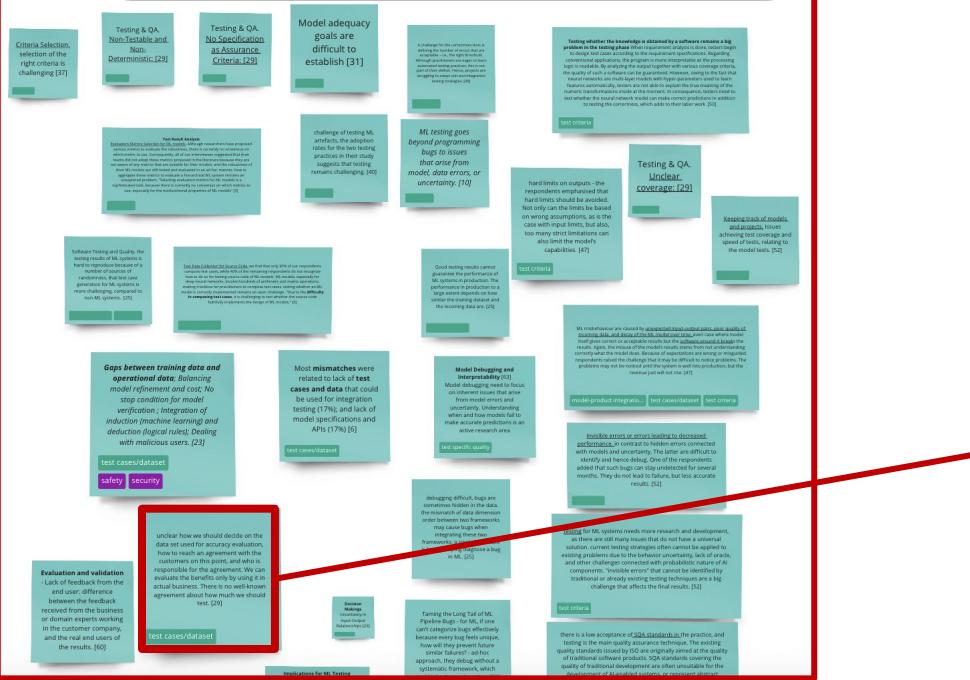
second layer – groups of common themes in the challenges

third layer — sticky notes – challenges extracted from the papers

Zooming in

second layer

Testing and debugging ML models are difficult due to lack of specifications -- (evaluation for fit, not correctness; unclear target distributions, unclear whether test data representative, unclear accuracy goals, unclear how to measure robustness; oracle problem and silent mistakes; long tail of corner cases)



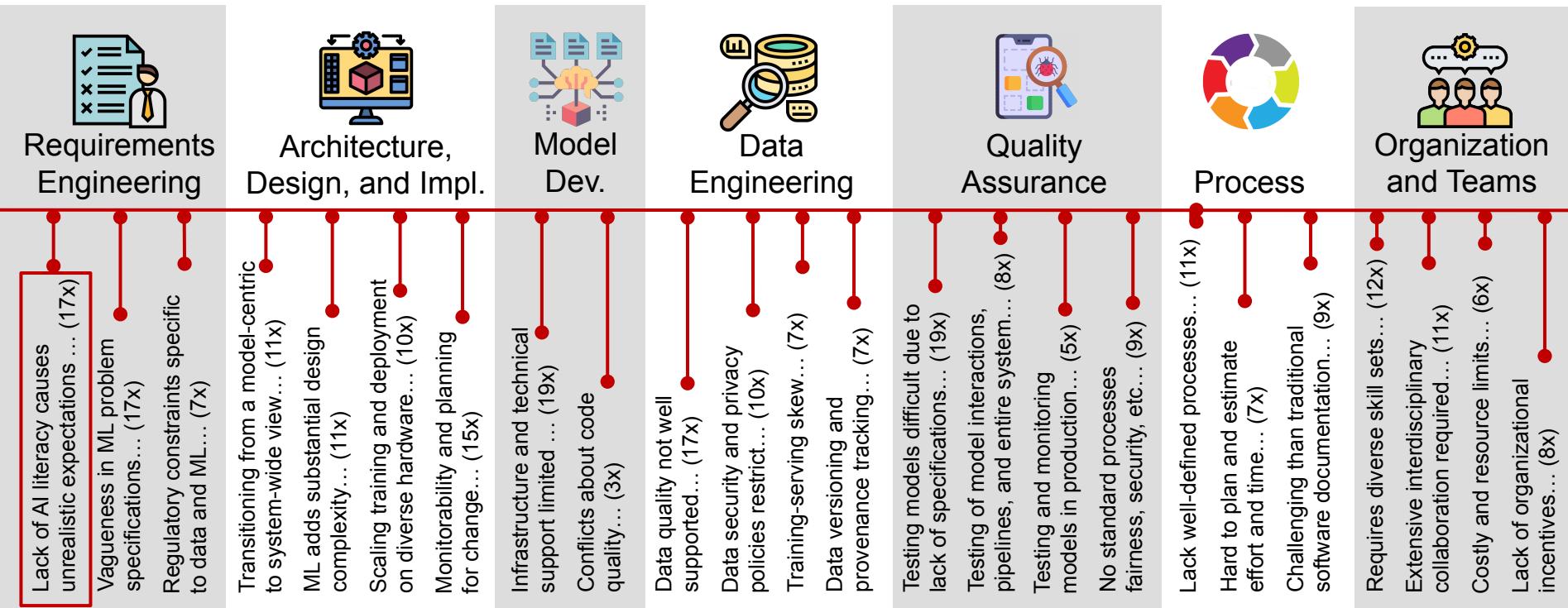
third layer: sticky note

unclear how we should decide on the data set used for accuracy evaluation, how to reach an agreement with the customers on this point, and who is responsible for the agreement. We can evaluate the benefits only by using it in actual business. There is no well-known agreement about how much we should test. [29]

test cases/dataset

Results: Challenge Themes

Overview of Challenges



Lack of AI literacy causes unrealistic expectations from customers, managers, and even other team members (17x)

Customers frequently have unrealistic expectations of ML capabilities.

- Don't want to pay for the continuous improvement of the model
- Only consider paying for coding
- Don't want to invest in collecting high-quality data

This is also a problem of the team members within the company itself.

Lack of AI literacy causes unrealistic expectations from customers, managers, and even other team members (17x)

[customer] believe in a “perfect AI” that makes no mistakes¹

“For this project, [the project manager] wanted to claim that we have no false positives and I was like, that's not gonna work²”

“We designers do not understand the limits of machine learning...designers act like you can just sprinkle some data science onto a design and it will become automatically magical³”

“CEOs and executives don't really understand what it takes [to develop and deploy ML]⁴”

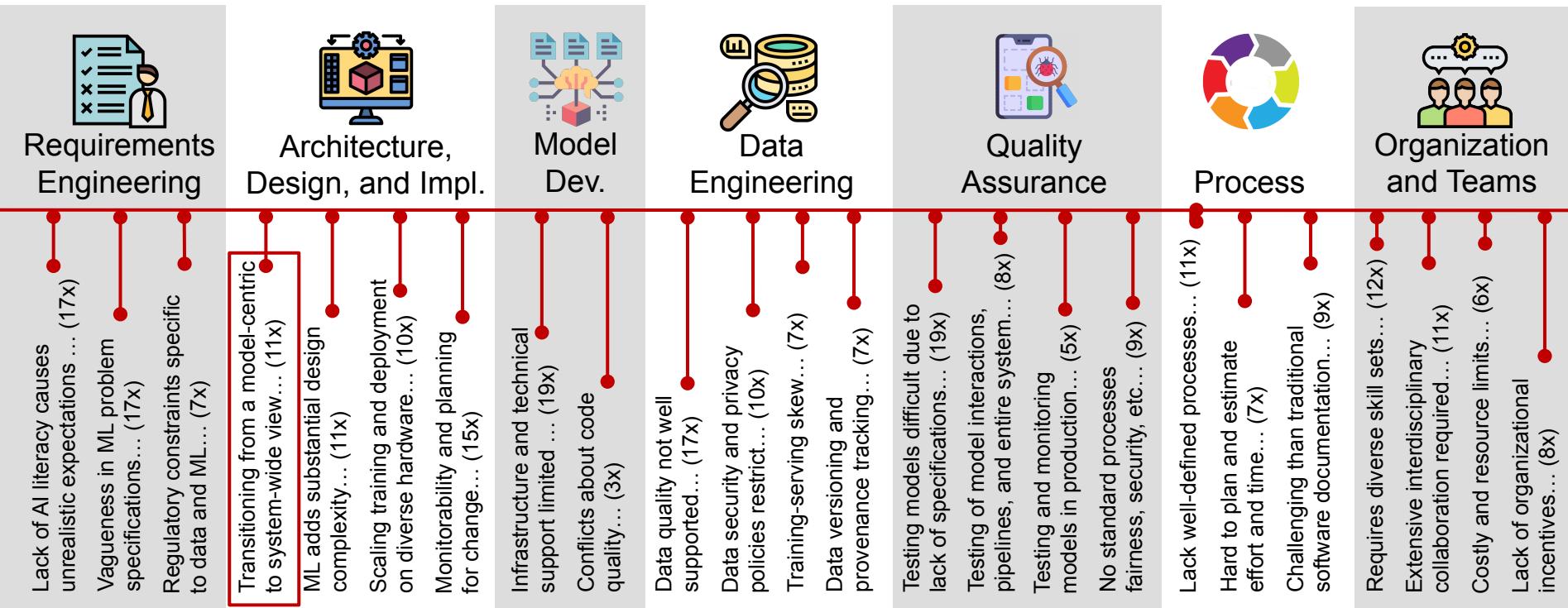
¹Ishikawa et al. "How do engineers perceive difficulties in engineering of machine-learning systems?-questionnaire survey." In 7th CESI and 6th SER&IP, 2019.

²Nahar et al. "Collaboration Challenges in Building ML-enabled Systems: Communication, Documentation, Engineering, and Process." In ICSE, 2022.

³Dove et al. "UX design innovation: Challenges for working with machine learning as a design material." In CHI conference on human factors in computing systems, 2017.

⁴Hopkins et al. "Machine learning practices outside big tech: How resource constraints challenge responsible development." In AAAI/ACM Conference on AI, Ethics, and Society. 2021.

Overview of Challenges



Transitioning from a model-centric to a pipeline-driven or system-wide view is considered important for moving into production, but a difficult paradigm shift for many teams (11x)

- Challenges in migrating from exploratory model code, often in a notebook, to deployable production-quality code in automated ML pipelines
- Difficulties of integrating various ML and non-ML components in a system
- Overwhelming complexity of integrating many tools and frameworks
- Need for engineering skills beyond the comfort zone of some data scientists
- Frequent re-training and deployment of models are needed

Transitioning from a model-centric to a pipeline-driven or system-wide view is considered important for moving into production, but a difficult paradigm shift for many teams (11x)

“ It’s the *difference between* giving somebody a *notebook*...and giving a *higher level tool* that has a lot of built-in functionality. It’s there that I see most challenges ¹ ”

“ You have this cliff edge of a *gap* between moving this from that *Python stack*, for example, into a *production level* ... that’s the challenge for the industry ² ”

“ There are *no tool-chains you can download in an infrastructure* with deep learning like this. And we realized after the mistakes and discussions with our new IT that they *didn’t really have the expertise* to be able to deliver this to us. So we had to *create new teams*, which took the responsibility of creating both the *infrastructure*, but also the *software tool-chain* to be able to train deep learning networks. ¹ ”

¹Wakatare et al. "A taxonomy of software engineering challenges for machine learning systems: An empirical investigation." In Agile Processes in Software Engineering and XP, 2019.

²Zdanowska et al. "A study of UX practitioners roles in designing real-world, enterprise ML systems." In CHI Conference on Human Factors in Computing Systems. 2022.

Testing and debugging ML models is difficult due to lack of specifications (19x)

“ there *isn't always an actual spec* of exactly *what data* they have, *what data* they think they're going to have and *what they want the model to do* ”

“ They (clients) just *throw us the data* and says: *look at it and maybe you can find something* – [participant 7]² ”

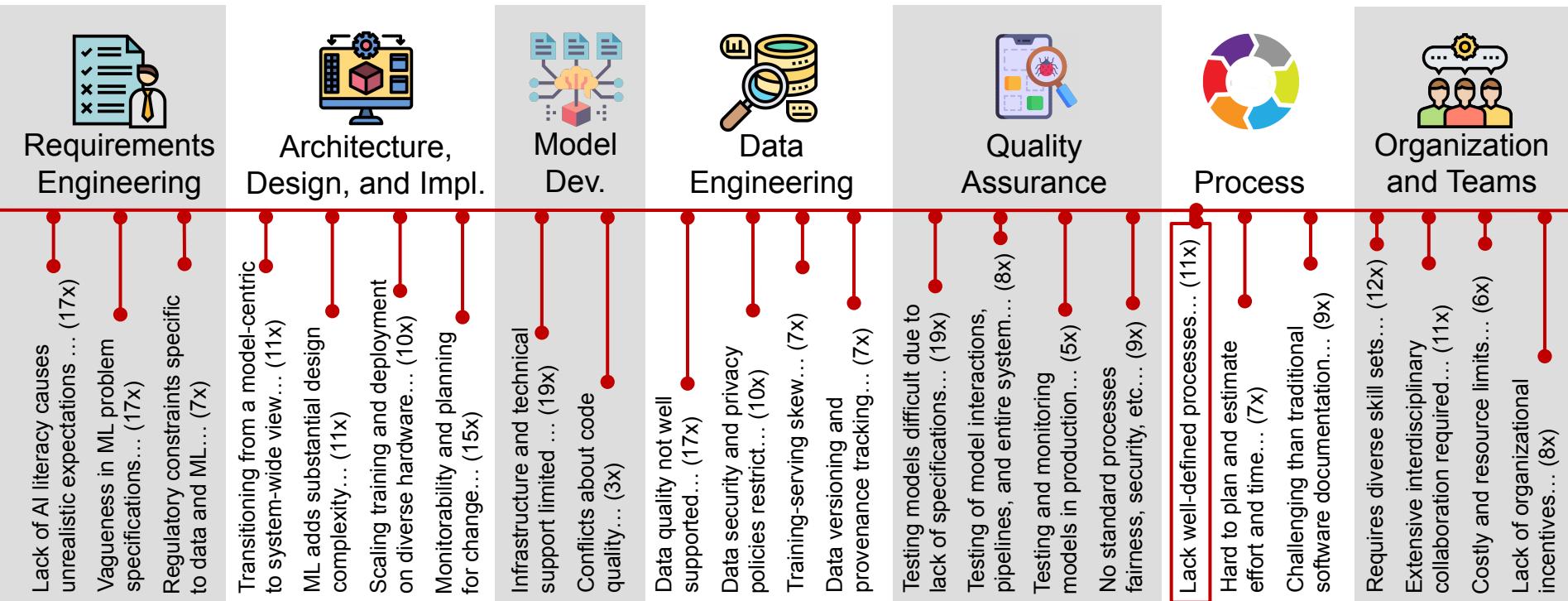
“ ...*there is, to my knowledge, no decisive way to ensure correctness but to leverage more data for testing predictions*”. ”

¹Ishikawa et al.

²Liu et al. "Emerging and changing tasks in the development process for machine learning systems." In Proceedings of the international conference on software and system processes, 2020.

³Lwakatare et al.

Overview of Challenges



Development of products with ML component(s) is often adhoc, lacking well-defined processes (11x)

Practitioners struggle finding a good process for developing ML components and products around

- ad-hoc strategies + lack of good engineering practices

“*There are projects that I do one thing, and there are others that I do not do... there is **no well-defined process** here¹* **”**

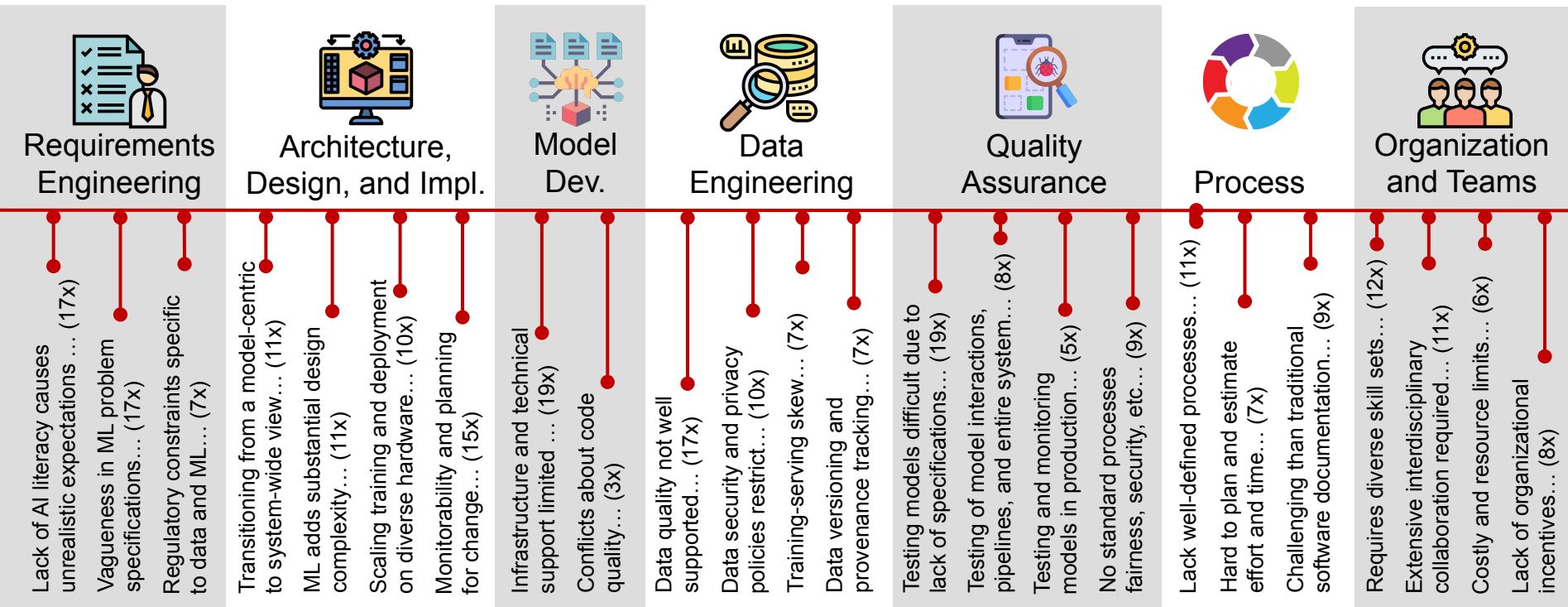
Waterfall: poor fit for exploratory development work

Agile: sprint timeline too fixed and short

- + hard to set expectations for each sprint with unclear project objectives at the beginning

¹de Souza et al. "Understanding Development Process of Machine Learning Systems: Challenges and Solutions." In ESEM, 2019.

Overview of Challenges



Old Or New Challenges?

POINT-COUNTERPOINT

Can Software Engineering Harness the Benefits of Advanced AI?

Mary Shaw and Liming Zhu

Artificial intelligence (AI) has allowed us to build systems beyond anything deemed possible earlier. Can we evolve existing techniques in software engineering to meet the needs of AI enabled systems or do we need to build unique and novel tools to do so?

Old Or New Challenges?

Requirements

Process

Collaboration

Old, but seem
to be more
problematic

Architecture

Quality Assurance

Not new, but
problems of different
nature with ML

Model-related

Data-related

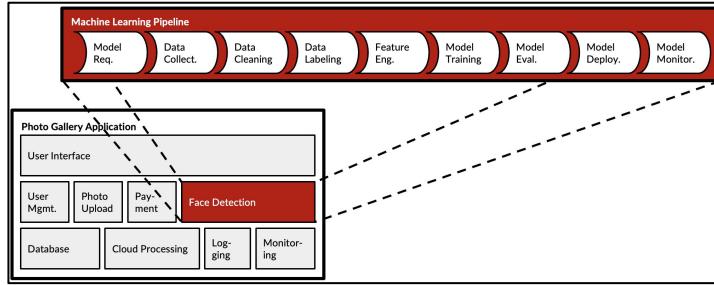
Not new, but much
more important now

We know the challenges, time to work on solutions!

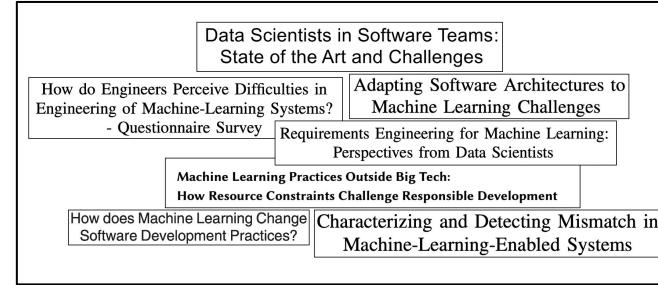


Summary

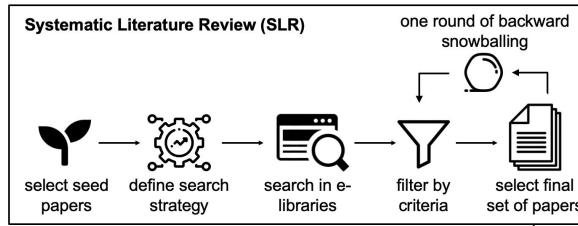
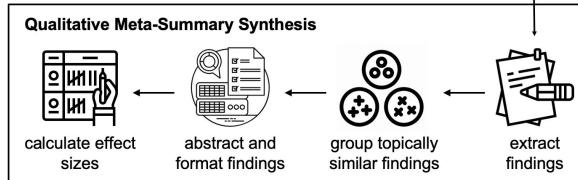
ML as a Component of a Product



Lots of Pain-point Papers for ML Products



We Conducted a Meta-summary



We Summarized and Presented the Challenges

